On two curvature-driven problems in Riemann–Finsler geometry

نویسندگان

  • Makoto Matsumoto
  • DAVID BAO
چکیده

This article uses the Berwald connection exclusively, together with its two curvatures, to cut an efficient path across the landscape of Finsler geometry. Its goal is to initiate differential geometers into two key research areas in the field: the search for unblemished “unicorns” and the study of Ricci flow. The exposition is almost self-contained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative volume comparison theorems in Finsler geometry and their applications

We establish some relative volume comparison theorems for extremal volume forms of‎ ‎Finsler manifolds under suitable curvature bounds‎. ‎As their applications‎, ‎we obtain some results on curvature and topology of Finsler manifolds‎. ‎Our results remove the usual assumption on S-curvature that is needed in the literature‎.

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Randers Metrics of Sectional Flag Curvature

A Finsler metric is of sectional flag curvature if its flag curvature depends only on the section. In this article, we characterize Randers metrics of sectional flag curvature. It is proved that any non-Riemannian Randers metric of sectional flag curvature must have constant flag curvature if the dimension is greater than two. 0. Introduction Finsler geometry has a long history dated from B. Ri...

متن کامل

Nonholonomic Clifford Structures and Noncommutative Riemann–Finsler Geometry

We survey the geometry of Lagrange and Finsler spaces and discuss the issues related to the definition of curvature of nonholonomic manifolds enabled with nonlinear connection structure. It is proved that any commutative Riemannian geometry (in general, any Riemann– Cartan space) defined by a generic off–diagonal metric structure (with an additional affine connection possessing nontrivial torsi...

متن کامل

Para-CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional para-CR structure on the slit tangent bundle T0M of a Finsler manifold (M,F ) by imposing a condition regarding the almost paracomplex structure P associated to F when restricted to the structural distribution of a framed para-f -structure. This condition is satisfied when (M,F ) is of scalar flag curvature (particularly constant) or if the Riemannian manifold (M,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007